Step of Proof: order_split
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
order
split
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
.
R
(
a
,
a
)
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
6.
x
,
y
:
T
. Dec(
x
=
y
)
7.
a
:
T
8.
b
:
T
9.
R
(
a
,
b
)
(
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
a
=
b
)
latex
by ((Decide
a
=
b
)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
10.
a
=
b
C1:
(
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
a
=
b
)
C
2
:
C2:
10.
(
a
=
b
)
C2:
(
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
a
=
b
)
C
.
Definitions
t
T
,
P
Q
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
origin